

What Computers Can and Cannot Do

Back to School ...

п	<i>x</i> =10 ^{<i>n</i>}	X	$n = \log_{10} x$
0	1	1	0
1	10	10	1
2	100	100	2
3	1,000	1,000	3
4	10,000	10,000	4
5	100,000	100,000	5
6	1,000,000	1,000,000	6
7	10,000,000	10,000,000	7
8	100,000,000	100,000,000	8
9	1,000,000,000	1,000,000,000	9
10	10,000,000,000	10,000,000,000	10

By definition, $\log_{10}(10^n) = n$

... or in Base 2 ...

n	x= 2 ⁿ	X	$n = \log_2 x$
0	1	1	0
1	2	2	1
2	4	4	2
3	8	8	3
4	16	16	4
5	32	32	5
6	64	64	6
7	128	128	7
8	256	256	8
9	512	512	9
10	1,024	1,024	10

By definition, $\log_2(2^n) = n$

Some Simple Problems

- Find a card in a shuffled deck of *n* cards
 - Time proportional to n; $t = \mathbf{O}(n)$
- Find a page in a phone book of *n* pages
 - Time proportional to $\log_2 n$; $t = O(\log_2 n)$
- Sort a deck of *n* cards using bubble-sort, etc.
 - Time proportional to n^2 ; $t = \mathbf{O}(n^2)$
- Sort a deck of cards using merge-sort, etc.
 - Time proportional to $n\log_2 n$; $t = O(n\log_2 n)$

Some Hard Problems

- Listing all binary numbers of length n:
 - $O(2^n)$
- Listing all permutations of a sequence of length n:
 - $\mathbf{O}(n \times (n-1) \times (n-2) \times (n-3) \dots \times 2 \times 1) = \mathbf{O}(n!)$
- Scheduling exam time-table in the fewest sessions:
 - maps onto Graph Colouring problem
- Travelling salesman problem:
 - a version of Hamiltonian Circuit problem

Comparative Growths

• On log-log scale *kn*^x is a straight line

Definition of Tractability

- A problem is *tractable* if an algorithm exists for its solution that takes time that is bounded by a *finite* polynomial in the size of the input
- In other words, its graph never rises above some straight line.
- All other problems are *intractable*.

Graph Theory can Describe Problems

• Graphs can be used to remove needless detail:

- Points are called vertices
- Lines are called edges

Hard or Easy?

- Euler Circuit: cross every bridge easy
- Hamiltonian Circuit: visit every place hard
- Find all anagrams of a given word:
 - Permute letters: **O**(*n*!)
 - Scan dictionary: **O**(1)

Degrees of Difficulty

- Insoluble
 - Halting problem, paradoxes.
- Intractable
 - All permutations
- NP-complete
 - Read on ...
- Maybe NP-hard
 - graph isomorphism
- Polynomial

3-Sat: The 1st NP-complete Problem

Find values of A, B, C, and D that make $(A \text{ or } D) \& (B \text{ or } \overline{C}) \& (C \text{ or } \overline{A}) \& (A \text{ or } \overline{B} \text{ or } \overline{C}) \& (\overline{B} \text{ or } \overline{C})$ true.

(Easy to make it false, e.g., A false, D false.)

Knowing you have an NP problem

- If solving your problem would solve a known NP problem, it is NP-hard.
- If solving a known NP-complete problem would solve your NP-hard problem, it is NP-complete.
- Exam timetable:
 - Use the fewest sessions.
 - Avoid timetable clashes.
 - Two subjects clash if at least one student sits both.
 - Heuristic: biggest classes first.

Graph Isomorphism—P or NP?

• Are any two graphs the same after relabelling?

