
Streaming Video from the Raspberry-Pi Camera — c©LSGA (Wed 4 Nov 2015) 1

Introduction to Streaming Video

This tutorial explores a couple of ways of viewing continuous video sent from the RaspberryPi
camera to laptops on a local area network. This shows the general situation from start to finish:

Scene of interest ->

---> PiCam (raspivid)

---> RasPi nanocomputer

---> NETWORK (could be local or internet)

---> latency of some sort

---> you@YOUR COMPUTER

---> DISPLAY (vdu, projector)

Steep Learning Curve ahead

There are various ways of achieving this. Two methods are investigated: using netcat and using
a specialised gstreamer program. We look at ways of reducing latency, and of displaying video on
other computers in a Local Area Network. But first, a bit about netcat and ports . . .

Ports

TCP/IP packets arriving at a network interface card contain information about source IP address,
destination IP address, port, service and data. To use netcat we need to check the usual suspects
and choose port numbers (up to 65535) that are unlikely to conflict with any current usage.

$ less /etc/services

Network services, Internet style

tcpmux 1/tcp # TCP port service multiplexer

echo 7/tcp

discard 9/tcp

systat 11/tcp

daytime 13/tcp

netstat 15/tcp

qotd 17/tcp

msp 18/tcp # message send protocol

chargen 19/tcp ttytst source

ftp-data 20/tcp

ftp 21/tcp

ssh 22/tcp # SSH Remote Login Protocol

telnet 23/tcp

smtp 25/tcp mail

time 37/tcp timserver

...

...

tfido 60177/tcp # fidonet EMSI over telnet

fido 60179/tcp # fidonet EMSI over TCP

Streaming Video from the Raspberry-Pi Camera — c©LSGA (Wed 4 Nov 2015) 2

For convenience in seeing what is going on, we shall always choose port=12345 on our local machine,
and if a further port is needed we shall use port=54321. To make it stand out in the examples, we
shall use 11 rather than just 1 when referring to the local laptop, and 22 rather than just 2 when
referring to the raspberry pi, and 33 rather than just 3 when referring to the other laptop.

What is this netcat thing?

$ man nc

NAME nc - TCP/IP swiss army knife

DESCRIPTION

netcat is a simple unix utility which reads and writes data across net

work connections, using TCP or UDP protocol. It is designed to be a

reliable "back-end" tool that can be used directly or easily driven by

other programs and scripts. At the same time, it is a feature-rich

network debugging and exploration tool, since it can create almost any

kind of connection you would need and has several interesting built-in

capabilities. Netcat, or "nc" as the actual program is named, should

have been supplied long ago as another one of those cryptic but stan

dard Unix tools.

In the simplest usage, "nc host port" creates a TCP connection to the

given port on the given target host. Your standard input is then sent

to the host, and anything that comes back across the connection is sent

to your standard output. This continues indefinitely, until the net

work side of the connection shuts down. Note that this behavior is

different from most other applications which shut everything down and

exit after an end-of-file on the standard input.

Netcat can also function as a server, by listening for inbound connec

tions on arbitrary ports and then doing the same reading and writing.

With minor limitations, netcat doesn’t really care if it runs in

"client" or "server" mode -- it still shovels data back and forth until

there isn’t any more left. In either mode, shutdown can be forced after

a configurable time of inactivity on the network side.

OK, so nc rules. So let’s get familiar with it — we are going to use it a bit.

Getting comfortable with netcat

In what follows, we’ll perform some heuristic exercises on three computers connected in our LAN:

local: which is our laptop with eth0=192.168.0.11 and wlan0=10.0.0.11;

rpi: which is a raspberry pi with eth0=192.168.0.22 and a camera module;

other: which is another wireless-only laptop with wlan0=10.0.0.33.

Streaming Video from the Raspberry-Pi Camera — c©LSGA (Wed 4 Nov 2015) 3

Disconnect from the internet. Over the internet you’ll have to configure a firewall to let nc

through, but we cannot deal with internet or firewalls here. While we work on our LAN, you might
need to disable any firewall that could stop nc connecting. Just do this: sudo /sbin/iptables -F.

Always sketch the data flow.

Our network consists of a local computer (with you logged in) that has both a wired network interface
eth0 and a wireless network interface wlan0, connected by the eth0 interface to the RaspberryPi,
and there is some other computer with only a wireless interface wlan0.

Establish IP addresses

Your local computer is assigned the eth0 IP address 192.168.0.11, the RaspberryPi gets the eth0
IP address 192.168.0.22 and the other computer has the wlan0 IP address 10.0.0.33.

local~$ sudo /sbin/ifconfig eth0 192.168.0.11 up

rpi~$ sudo /sbin/ifconfig eth0 192.168.0.22 up

local~$ [create a new ad-hoc network using your network manager with wlan0=10.0.0.11]

local~$ /sbin/route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

10.0.0.0 0.0.0.0 255.255.255.0 U 0 0 0 wlan0

192.168.0.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

other~$ [connect to the ad-hoc network created above on local, and assign wlan0=10.0.0.33]

Let’s try out some commands. Notice that we always start nc on the listening computer first.

First, some idle chat between two computers. After these commands are run, whatever is typed
on either appears on the other until one process is cancelled.

other~$ nc -l -p 12345

local~$ nc 10.0.0.33 12345

hello world!

Second, a file transfer from local to other.

other~$ nc -l -p 12345 > file.out

local~$ nc 10.0.0.33 12345 < file.in

Third, play a movie that is stored on local but plays on the other computer.

other~$ nc -l -p 12345 | /usr/bin/mpv -

local~$ nc 10.0.0.33 12345 < movie.mp4

Finally, run a shell on other from local.

other~$ ls

f1 f2 f3

other~$ nc -l -p 12345 -e /bin/bash

local~$ nc 10.0.0.33 12345

ls

f1 f2 f3

Streaming Video from the Raspberry-Pi Camera — c©LSGA (Wed 4 Nov 2015) 4

Putting it all Together

We are now in a position to stream the RPi Camera over a netcat connection. There are various
youtube videos on all aspects of this topic, and these recipes are tested and the results follow.

First, from one terminal emulator on local, start listening for video to display:

local~$ nc -l -p 12345 | /usr/bin/mpv -

Playing: -

[file] Reading from stdin...

Then, from another terminal emulator on local, log in to the rpi and start the camera:

local~$ ssh pi@192.168.0.22

rpi~$ raspivid -vf -hf -n -w 1024 -h 768 -t 0 -fps 20 -o - \

| nc 192.168.0.11 12345

This plays on local with a latency of between 5-8 seconds.

Now for lower latency

From blogs, it appears that one simple trick is to read more frames (e.g. fps=90) on the listening
side than you send out (e.g. fps=20) from the Pi; this makes sure the buffer stays empty.

First, from one terminal emulator on local, start listening for a video stream to display:

local~$ nc -l -p 12345 | /usr/bin/mpv -fps 90 -

Playing: -

[file] Reading from stdin...

Then, from another terminal emulator on local, log in and start the camera:

local~$ ssh pi@192.168.0.22

rpi~$ raspivid -vf -hf -w 1024 -h 768 -t 0 -fps 20 -o -|nc 192.168.0.11 12345

This plays on local with a latency of about 250 milliseconds.

Display on another laptop

First, from a terminal emulator on other, start listening for video to display:

other~$ nc -l -p 54321 | /usr/bin/mpv -fps 90 -

Playing: -

[file] Reading from stdin...

Second, from a terminal emulator on local, pass the stream on to other directly:

local~$ nc -l -p 12345 | nc 10.0.0.33 54321

Finally, from another terminal emulator on local, log in to the rpi and start the video:

local~$ ssh pi@192.168.0.22

rpi~$ raspivid -vf -hf -w 1024 -h 768 -t 0 -fps 20 -o -|nc 192.168.0.11 12345

This video stream goes from the rpi to local and is immediately passed on to other and plays on
other with a latency of less than half a second.

Streaming Video from the Raspberry-Pi Camera — c©LSGA (Wed 4 Nov 2015) 5

Doing all this with gstreamer

This is part of the https://en.wikipedia.org/wiki/GStreamer project. You need to compile the
latest experimental code on the rpi like this:

rpi~$ sudo apt-get install libv4l libv4l-dev libjpeg8-dev \

imagemagick build-essential cmake subversion

rpi~$ cd /usr/src

rpi~$ sudo mkdir mjpg-streamer

rpi~$ sudo chown $(whoami):users mjpg-streamer

rpi~$ cd mjpg-streamer/

rpi~$ git clone https://github.com/jacksonliam/mjpg-streamer .

rpi~$ cd mjpg-streamer-experimental/

rpi~$ make

rpi~$ export LD_LIBRARY_PATH=.

rpi~$./mjpg_streamer -o "output_http.so -w ./www" -i "input_raspicam.so \

-x 640 -y 480 -vf -hf -fps 20 -ex night"

To display it on local, open a terminal emulator on local and execute this: ./rpi-streamer.py
which runs the following python program:

#!/usr/bin/python

import cv2

import urllib

import numpy as np

stream=urllib.urlopen(’http://192.168.0.22:8080/?action=stream’)

bytes=’’

while True:

bytes+=stream.read(1024)

a = bytes.find(’\xff\xd8’)

b = bytes.find(’\xff\xd9’)

if a!=-1 and b!=-1:

jpg = bytes[a:b+2]

bytes= bytes[b+2:]

i = cv2.imdecode(np.fromstring(jpg, dtype=np.uint8),cv2.CV_LOAD_IMAGE_COLOR)

cv2.imshow(’i’,i)

if cv2.waitKey(1) == 27:

exit(0)

The video runs until you hit the ESC key when the cursor is in the frame. Nicely, you can also
view it in a browser, by browsing to http://192.168.0.22:8080 and clicking ’stream’.

Conclusion

We have examined two methods of viewing a continuous video taken by the RaspberryPi camera.
The methods are tried on a secure local network, not over the internet, in order to illustrate the
principles and practicalities involved. One method, using netcat, can send that video stream to any
other computer on the network; the other method, using gstreamer, can view it on the computer
connected to the Pi. Both methods can achieve very low latency of about a quarter of a second.

