
Neural Networks
& Deep Learning

Why they are hot:
Catalyst (Oct 17): Autonomous cars, robots, etc.

iPhone X: ‘Bionic’ chip with Neural engine.

MAC OS High Sierra: “Your GPU … adds
capabilities like machine learning, etc.”

… and doubtless many others.

We have about 100 billion neurons
and about 100 trillion dendrites!

Real neurons vary
their output pulse
rate; artificial ones
vary output value.

A perceptron can combine many inputs to make a binary decision.

We begin with a random set of weights.
If the output is incorrect, we adjust each weight w in
proportion to the error times the value of its input x.

The proportion is called the learning rate.
(Here, the output error can only be +1 or -1.)

The Perceptron

Effect of Presenting Teaching Examples

However many examples are presented, a perceptron can only
choose one best straight boundary to separate them.

Many simple problems need multiple boundaries.
(For example, X≠Y occupies two regions either side of the line X=Y.)

In theory, only 3 fully-connected layers are needed for any task.
Easy to prove—but how many hidden-layer neurons are needed?

Too few: poor performance; too many: ‘over-training’.
How long will it take to train them? What is the best learning rate?

Shallow Neural Networks

We measure the error in each output (Actual - Desired)
and adjust the weights in the same way as a perceptron.

Training a Neural Network

Back Propagation

How do we estimate Desired for a hidden layer neuron?
We sum its error contributions to each output neuron: i.e., what

output would drive the next layer of neurons in the right direction
on average? We work backwards from the desired output.

The NORB dataset contains normalised 8-bit
grey-scale 96x96 pixel stereo pair photos of

toys: animals, humans, planes, trucks and cars.

This Deep Convolutional Network
was set up specifically for the NORB dataset.

L0 contains the original binocular 96x96 pixel 8-bit grey-scale images.
C1 passes 5x5 patches of the image through 16 different convolutional filters.
P2 pools 4x4 patches of micro-features, reducing by a factor of 16.
C3 passes 6x6 patches of features through 64 different 18x18 convolutional filters.
P4 pools 3x3 patches of macro-features.
F5 is a fully connected layer of 100 neurons with over 200,000 weights.
F6 is the fully connected output layer: 5 toy categories, or ‘No’.

What is ‘convolution’?

Digital filtering
● Think about a digitised audio stream
● A very simple filter is a “running average”
● This tends to remove high frequencies in the

input; if the weightings are {1/3 1/3 1/3} it has
unity gain for a constant signal (DC).

Sum

⅓ ⅓ ⅓

Input

Output

Filter

0

1

1

0

● Now consider what might happen in 2 dimensions
– an image

● The equivalent filter would be
● { 1/9 1/9 1/9
 1/9 1/9 1/9
 1/9 1/9 1/9}
I would “contaminate” each pixel with some data
from the adjacent ones. We call this blur.

● Different filter weightings give different frequency
responses.

● Weightings like {-1 0 1} for example will
emphasise high frequencies; the output would be
zero for a constant signal.

● This filtering process is called convolution.

-1 0 1

Input

Output

Filter Sum

0

1

0

1

● A filter like:  

● { -1/6 0 1/6 
 -1/6 0 1/6  
 -1/6 0 1/6}

 
will give zero output if all pixels are the same, and
maximum output as it passes over a dark-to-light
step; it is a detector for vertical edges;
Change the signs and it will give maximum output
for light-to-dark edges.

● Want horizontal edges?  

● {-1/6 -1/6 -1/6
 0 0 0
 1/6 1/6 1/6}  
 
will do it. 

And diagonals? How about:  

{ 0 1/6 1/6
 -1/6 0 1/6
 -1/6 -1/6 0 }

● This shows how simple arithmetic can be used to
detect “features” in an image. 

● These features can help a neural network decide
what the image represents. 

● Of course, more complex features can be
extracted, using larger filters …

-4 We slide the filter all over the image.
At each filter position, we sum Image x
Filter for each pixel. For simplicity,
White scores +1, black scores -1.

Convolution
5x5 1-bit Image 3x3 1-bit Filter

In practice, several random filters are used.

-4

Convolution

-4

Convolution

-4

Convolution

3

-4

Convolution

3 5

-4

Convolution

3 5 3

-4

Convolution

3 5 3
5

-4

Convolution

3 5 3
5 9

-4

Convolution

3 5 3
5 9 5

-4

Convolution

3 5 3
5 9 5
-3

-4

Convolution

3 5 3
5 9 5
-3 5

-4

Convolution

3 5 3
5 9 5
-3 5 3

-4-4
-4
2

2

32
0

2

-2
-2

-4

95 5
-3 5 3

35
-2-2 -2

-4

0
-4

The edge pixels of the image see only
part of the filter and are often ignored.

Convolution
In practice, many filter positions
are evaluated in parallel using a
graphics processor or a special
‘neural processor unit’.
There is only one set of weights
per filter, independent of position.
Using the same weights in all
positions assumes translation
invariance, either in space
(images) or time (sounds).
The filter weights are adjusted
using back propagation.

The NORB Network again.
What is ‘pooling’?

Outputs Pooled Unpooled Weights Unpooled
L0 18,432 18,432
C1 135,424 135,424 400 400
P2 8,464 135,424
C3 20,736 311,040 2,304 2,304
P4 2,304 311,040
F5 100 2,799,360 230,400 31,104,000
F6 6 6 600 600

-4-4
-4
2

2

32
0

2

-2
-2

-4

95 5
-3 5 3

35
-2-2 -2

-4

0
-4

Pooling

Notice that ‘features’
cannot be smaller than

the size of the filter.

Finding patterns of features

Possible pooling methods are
to take (weighted) averages
or find the maximum value.

Maximum seems to work well.

Libraries

• Caffe: A popular library for convolutional neural networks. It supports both
CPU and GPU. Developed in C++, and has Python and MATLAB wrappers.

• MXNet: An open-source deep learning framework which is scalable, including
support for multiple GPUs and CPUs in distribution. It supports interfaces in
multiple languages (C++, Python, Julia, Matlab, JavaScript, Go, R, Scala,
Perl, Wolfram Language).

• neon: The fastest framework for convolutional neural networks and Deep
Learning with support for GPU and CPU backends. The front-end is in
Python. Acquired by Intel.

• TensorFlow: Apache 2.0-licensed library with support for CPU, GPU and
Google's proprietary TPU. 

 • Theano: The reference deep-learning library for Python with an API largely
compatible with the popular NumPy library. Allows user to write symbolic
mathematical expressions, then automatically generates their derivatives,
saving the user from having to code gradients or back-propagation. 

• Torch (www.torch.ch): A scientific computing framework with wide support for
machine learning algorithms. It is used at Facebook AI Research and Twitter.

https://en.wikipedia.org/wiki/Caffe_(software)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/MATLAB
http://mxnet.io/
https://github.com/NervanaSystems/neon
https://github.com/soumith/convnet-benchmarks/
https://en.wikipedia.org/wiki/TensorFlow
https://en.wikipedia.org/wiki/Theano_(software)
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/Torch_(machine_learning)
http://www.torch.ch/

Summary
The limitations of the simple Perceptron caused a long delay in
development.

The proof that 3 layers are enough led to further delays.

Current progress in face and speech recognition is based on
deep networks.

Convolutional filters provide translational invariance. They have
few weights and are efficiently implemented using GPUs.

Currently rotational and scale invariance are provided by fully-
connected networks—with luck! (Scope for research!)

Back propagation works, but it’s slow & not how nature does it.

