
Commandline Control of Raspberry Pi GPIO Pins — c©LSGA (Wed 13 Mar 2024) 1

Introduction to the GPIO System

To qualify as a secure Thing within the IoT1, a device must be accessible by an IP address, and
preferably encrypted to keep it private. The RasPi2 is a suitable module for this purpose, considering
it has ssh3 access and interfaces with simple hardware through its GPIO4 pins. This tutorial describes
in detail how you can program the GPIO pins, using a simple bash5 script. I consider other ways of
doing this – with C or python – as too complex for beginners.

Setting up the Demonstration

Referring to the diagram below, in this talk I shall control everything from an Intel NUC6, using a
large smart TV as its video monitor, with a wireless mouse and wireless keyboard.

The three computers are connected by ethernet cable via a switch. The master computer boots
to IP address 192.168.0.11, the RasPi with the camera module boots to IP address 192.168.0.22
and the RasPi with the breadboard attached boots to the IP address 192.168.0.33.

I’ll use nc7 to stream the RasPi camera module’s view of a breadboard8 (containing some LED9

circuits) to the large TV so the audience can see the result of programming the pins and hence the
LEDs. See our talk at http://linuxlsga.net/stream.pdf.

Note that I disconnect from the internet. Over the internet you’ll have to configure a firewall to
let nc through, but I cannot deal with internet or firewalls here. While I work in my LAN10, I’ll need
to disable any firewall that might stop nc connecting, thus: sudo /sbin/iptables -F.

1internet of things
2raspberry pi nano computer
3the secure shell program
4general purpose input/output
5bourne-again shell program
6next unit of computing
7the netcat program
8a solderless lashup device for experimenting with circuits
9light-emitting diode

10local area network

Commandline Control of Raspberry Pi GPIO Pins — c©LSGA (Wed 13 Mar 2024) 2

Streaming the Video of the Breadboard

Position the RasPi so its camera module can film the breadboard. First, from one terminal emulator
on master, start listening on port 12345 for video to display:

master~$ nc -l -p 12345 | /usr/bin/mpv --no-correct-pts --fps=90 -

Playing: -

[file] Reading from stdin...

Then, from another terminal emulator on master, log in to video and start the camera:

master~$ ssh 192.168.0.22

video~$ raspivid -vf -hf -n -w 1024 -h 768 -t 0 -fps 20 -o - | nc 192.168.0.11 12345

Return to the master desktop on the TV, and continuous video of what is happening on the
breadboard shall be playing on master with a latency of about 250 milliseconds.

OK, Let’s Control those GPIO Pins

My purpose here is to ensure that you can control a pin by setting it to a logical ’0’ (low voltage) or
a logical ’1’ (high voltage). If the pin is connected to a suitable LED circuit, this will turn off or turn
on that LED. If you can do this then you can advance to real projects. The relevant documentation
is in the file sysfs.txt in the computer kernel source code.

The diagram below shows that for the RasPi I have chosen, there are 40 physical pins. The
strange thing you’ll notice is that the pin names have nothing to do with the pin numbers. Just get
used to it. The manufacturer of the computers (Broadcom Corp) has assigned these.

To experiment with and explore these pins, first connect a jumper lead from pin 1 on the Pi
(3.3Volts) to the longer leg of a small red LED in the breadboard, then the shorter leg connected
in serial with a 330 Ohm resistor to GND, and connect a lead from this end of the resistor to pin
6 (GND) on the Pi. Stand back. When the RasPi is turned on and boots up, this red LED should
light up, proving that you have got things right thus far !

Next, turn off the Pi, for safety. On the breadboard connect a small green LED through another
330 Ohm resistor to GND, and connect a jumper lead from pin 11 (which is labelled as GPIO17) to
the positive (longer leg) of that LED, and connect a jumper from pin 20 (GND) on the Pi, to the
GND end of the resistor on the breadboard. We shall turn this green LED on and off at will.

Commandline Control of Raspberry Pi GPIO Pins — c©LSGA (Wed 13 Mar 2024) 3

Log in from master to the raspi. You will need to perform all these commands as root, since you
are now dealing with the computer hardware. So let’s become root and explore the kernel structure
that allows us to come to grips with pin 11 (gpio17).

raspi~$ sudo su

cd /sys/class/gpio

/bin/ls -F

export gpiochip0@ gpiochip504@ unexport

So far there is no apparatus for manipulating pin 11. You create that structure by writing 17 into
the export attribute.

echo "17">export

/bin/ls -F

export gpio17@ gpiochip0@ gpiochip504@ unexport

Notice that a new link to a directory for gpio17 has been created. Let’s go there.

cd gpio17

/bin/ls

active_low device direction edge power subsystem uevent value

You will be interested at this stage in direction and value. The default direction is in (meaning
you can read the value on the pin) and the default value is 0, so that nothing on the breadboard
gets damaged too much on bootup. You can now control these attributes of pin 11. Let’s check the
defaults first.

cat direction

in

cat value

0

Now let’s take the crucial step: make the direction out, so you can write to the pin, and write the
value 1 to it, to light the green LED.

echo "out">direction

cat direction

out

echo "1">value

cat value

1

This turns the LED on; if it does not ... then back to the drawing board !! But if it does ... well,
then — Congratulations !

Now build on this successful experiment by putting all this together. Copy the following more
formal blinking-led program into a text file (for example, using the program nano on the RasPi),
name it blink, make it executable by executing chmod +x blink and execute it by sudo ./blink.
The green LED should turn on and off every second until you hit CTRL+C, at which time the green
LED turns off and the program exits.

Commandline Control of Raspberry Pi GPIO Pins — c©LSGA (Wed 13 Mar 2024) 4

#!/bin/bash

program blink

usage: $ sudo ./blink

explicit led control from pin gpio17 (physical pin 11)

function error {

echo "ERROR: $1"

exit 1

}

[$(whoami) == root] || error "need to run as root"

define pin functions and connections to breadboard

gpio17 is physical pin 11

function create_pin {

if [! -d /sys/class/gpio/gpio17]

then

echo "17">/sys/class/gpio/export

fi

}

function remove_pin {

if [-d /sys/class/gpio/gpio17]

then

echo "17">/sys/class/gpio/unexport

fi

}

function set_pin_high {

echo "out" > /sys/class/gpio/gpio17/direction

echo "1" > /sys/class/gpio/gpio17/value

}

function set_pin_low {

echo "out" > /sys/class/gpio/gpio17/direction

echo "0" > /sys/class/gpio/gpio17/value

}

function led {

case "$1" in

on) set_pin_high ;;

off) set_pin_low ;;

*) error "can set pin high/low only" ;;

esac

}

Commandline Control of Raspberry Pi GPIO Pins — c©LSGA (Wed 13 Mar 2024) 5

function cleanup {

echo "got CTRL+C; turn led off"

led off

remove_pin

exit 0

}

trap ’cleanup’ INT

create_pin

while :

do

led on

sleep 1

led off

sleep 1

done

exit 0

Warnings

Remember to GROUND yourself on a kitchen sink before touching your RasPi; it is not well pro-
tected from discharges of static electricity.

Conclusion

We have tried out two projects dealing with the RasPi hardware.
We can use the PiCam to stream continuous video of a scene back to a master computer.
We can control turning on and off lights from the GPIO pins. Although there is no doubt

that the methods for programming the pins is simply weird when compared with my experience of
programming the Intel 8080 and the MicroChip Technology PIC Series, when you actually try
them out they begin to appear workable.

The methods are tried on a secure local network, not over the internet, in order to illustrate the
principles and practicalities involved.

