
A Word-Frequency Task using CMD, PSH and BASH — c©2008 Dr Gonzo Publishing 1

Sample Application: Frequency of words in text

It is easy to install cygwin on an XP machine to get the bash command-line interface. In addition,

cmd.exe runs natively on XP, and powershell v1.0 was released to try out on XP in November 2006.

Let us suppose that you boot to your GUI (Graphical User Interface) and that you want to

perform this very simple task:

display the most frequent words in any given text document

We search the GUI menus — but no luck; we search the supplied commands — but still no luck. So

we have to do this ourselves, by developing a command script of our own.

Develop Script: Frequency of words in text

Here I trace the steps you might use in developing a script for this task.

Original text in the file:

This is text in the file TRANSLATE this is text in the file

with numbers (85) & symbols, UPPER TO LOWER with numbers (85) & symbols,

[like this:], OK? [like this:], ok?

this is text in the file CONVERT this is text in the file

with numbers (85) & symbols, NON_LETTERS with numbers symbols

[like this:], ok? like this ok

this is text in the file REMOVE this is text in the file

with numbers symbols MULTIPLE SPACES with numbers symbols

like this ok like this ok

1/LINE -----> SORTED ----> COUNTED --> REVERSE NUMBER SORT -> TOP 5

this file 1 file 2 in 2 in

is in 1 in 2 this 2 this

text is 1 is 1 file 1 file

in in 2 in 1 like 1 like

the like 1 like 1 numbers 1 numbers

file numbers 1 numbers 1 ok

with ok 1 ok 1 symbols

numbers symbols 1 symbols 1 the

symbols the 1 the 1 with

like this 2 this

this this 1 with

ok with

2 A Word-Frequency Task using CMD, PSH and BASH — c©2008 Dr Gonzo Publishing

CMD: Frequency of words in text

First, install the stream-editor sed. You may do this by going to http://garbo.uwasa.fi/gsearch.html

and entering sed in the search bar; choose any version of sed for XP that appeals to you.

We start with a main routine called freq.bat that invokes separate.bat (which separates

words into lines) and distinct.bat (which counts distinct words).

create script ’freq.bat’: cmd> notepad freq.bat [and type in the text below]

create environment: echo off & setlocal

allocate parameters: set number=%1 & set FILE=%2

if %number% LEQ 0 set /a number=10

check text file exists: :validate

if NOT exist %FILE% (

set /p FILE="enter filename< "

goto :validate)

upper case to lower: type %FILE%|^

next 2 lines on one line: sed "y/ABCDEFHGIJKLMNOPQRSTUVWXYZ"

/abcdefghijklmnopqrstuvwxyz/"|^

non-letters to spaces: sed "s/[^a-z]/ /g"|^

ignore any empty lines: sed "/^$/d"|^

save the translated text: >trans.txt

separate words on own line: call separate.bat

count distinct words: call distinct.bat

select the most frequent: sed -n 1,%number%p distinct.txt

cancel local variables: endlocal

all done: exit /b 0

(end of freq.bat script): ^S [CONTROL S saves the file]

create script ’separate.bat’:

cmd> notepad separate.bat [and type in the following text]

:: separate.bat

echo off & setlocal & if exist words.txt del words.txt

:: list all words in each line of file trans.txt

for /f "tokens=* delims=" %%a in (’type trans.txt’) do call :extract %%a

:: sort the words in alphabetic order

type words.txt | sort > separate.txt

endlocal & goto :eof

:: routine to extract words and output one word per line

:extract

if [%1]==[] goto :eof

echo.%1>>words.txt

shift & goto :extract

^S [CONTROL S saves the script]

A Word-Frequency Task using CMD, PSH and BASH — c©2008 Dr Gonzo Publishing 3

create script distinct.bat:

cmd> notepad distinct.bat [and type in the following text]

echo off

setlocal enableextensions enabledelayedexpansion

if exist counted.txt del counted.txt

set WORD=######

set /a COUNT=0

for /f "tokens=1 delims=" %%w in (’type separate.txt’) do (

if "%%w" == "!WORD!" set /a COUNT+=1

if not "%%w" == "!WORD!" call :format !COUNT! !WORD!

if not "%%w" == "!WORD!" set /a COUNT=0

if not "%%w" == "!WORD!" set WORD=%%w

)

type counted.txt|find /v "######"|sort /r>distinct.txt

endlocal

goto :eof

:: routine to format numbers so they sort numerically

:format

if %1 LSS 10 echo. %1 %2>>counted.txt & goto :eof

if %1 LSS 100 echo. %1 %2>>counted.txt & goto :eof

if %1 LSS 1000 echo. %1 %2>>counted.txt & goto :eof

if %1 LSS 10000 echo. %1 %2>>counted.txt & goto :eof

if %1 LSS 100000 echo.%1 %2>>counted.txt & goto :eof

goto :eof

^S [CONTROL S to save the script]

locate the "freq" script: cmd> doskey freq="%HOMEPATH%\freq.bat" $*

now to invoke the script: cmd> freq 15 some.txt

PSH: Frequency of words in text

(this symbol ‘ is a backtick, under the ~ (tilde) key, for continuing lines)

allow execution of scripts: psh> Set-ExecutionPolicy RemoteSigned

create script ’freq.ps1’: psh> cd; notepad freq.ps1

allocate parameters: $number=[int]$args[0] ; $textfile=[string]$args[1]

check file existence: while (!(test-path ./$textfile -pathtype leaf)) {

repeat until valid: $textfile=read-host -prompt "enter filename< "}

put text into single string: $singleline=get-content $textfile

turn it into one long line: $longline=[string]::join(" ",$singleline)

convert upper to lower case: $lowercase=$longline.ToLower()

non-letters to spaces: $letters=$lowercase -replace ’[^a-z]’,’ ’

each word onto own line: $words=$letters.split(" ",[StringSplitOptions]::

(all this on one line): RemoveEmptyEntries)

4 A Word-Frequency Task using CMD, PSH and BASH — c©2008 Dr Gonzo Publishing

take all the words so formed $words ‘

and group by same word: | group-object ‘

and sort in occurrence order: | sort -descending count ‘

print out what we want: | format-table -property count,name ‘

without table headings: -hidetableheaders ‘

and see most frequent: | select-object -first $number

all done: exit 0

[for a faster hashtable method, replace "$words...exit 0" above with this gibberish*]

*take all the words so formed: $words ‘

*and group by same word: | % {$h=@{}} {$h[$_]+=1}

*and sort in occurrence order: $frequency=$h.psbase.keys|sort {$h[$_]}

*print out the most frequent: -1..-$number|%{$frequency[$_]+" "+$h[$frequency[$_]]}

*all done: exit 0

(end of freq.ps1 script): ^S [this is CONTROL S] then close window

locate the ’freq’ script: > function freq($N,$FILE) {

& "$HOME\freq.ps1" $N $FILE}

now can run the program: > freq 15 some.txt

BASH: Frequency of words in text

Our main script is freq, which is where we carry out our sanity tests first.

create script ’freq’: bash> cat>freq

run script with bash: #!/bin/bash

allocate parameters: number=$1; textfile=$2

check existence of file: while [! -e "$textfile"]; do

request missing filename: read -p "enter text filename < " textfile; done

number defaults to 10: if ["$number" -lt 0]; then let number=10; fi

get the text file: cat $textfile \

upper case to lower: |tr ’[A-Z]’ ’[a-z]’ \

non-letters to spaces: |sed ’s/[^a-z]/ /g’ \

squeeze multiple spaces: |tr -s ’ ’ \

words onto single lines: |tr ’ ’ ’\n’ \

exclude any empty lines: |grep -v ^$ \

sort words alphabetically: |sort \

count number of each word: |uniq -c \

sort in occurrence order: |sort -n -r \

show the most frequent: |head -$number

all done: exit 0

(finish of freq script): ^D [CONTROL D ends input, then press ENTER]

locate the ’freq’ script: bash> alias freq=’$HOME/freq’

and run the script: bash> chmod +x freq; freq 15 some.txt

A Word-Frequency Task using CMD, PSH and BASH — c©2008 Dr Gonzo Publishing 5

Execution Timing Results

The time taken for this task, under XP and all on the same 1.6GHz ACER laptop, was:

Shell Text Size Time Taken Comments and Notes

cmd 118 Kb 75 seconds slow due to awkward unsuitable design

1180 Kb 859 seconds

11800 Kb not attempted

psh 118 Kb 19 seconds slow because negotiating .NET, objects, &c.

118 Kb 9 seconds using advanced but more cryptic hashtable method

11800 Kb 254 seconds using advanced but more cryptic hashtable method

bash 118 Kb 0.75 seconds open-source code gets comprehensively optimised

11800 Kb 38 seconds

Comparison of Shells

parameter specification is very similar in all shells.

cmd> %1 %2 [but you need to use %%1 %%2 in a batch file]

psh> $1 $2 ... $9 [but there’s no ’shift’ command! - what were they thinking?]

bash> $1 $2 ... $9 [and you use ’shift’ to feed in more variables > 9]

variable allocation has some tricks up its sleeve.

cmd> set n="%1" [generally] set /a n=%1 [for numbers]

psh> $n="$1" [generally] $n=[int]$1 [for numbers]

bash> n="$1" [generally] let n=$1 [for numbers]

referring to variables is very similar in all shells.

cmd> echo %filename%

psh> out-host "$filename"

bash> echo "$filename"

continuing command lines is very similar in all these shells.

cmd> type file.txt | ^ [the circumflex ^ continues lines]

psh> get-content file.txt | ‘ [the backtick ‘ continues lines]

bash> cat file.txt | \ [the backslash \ continues lines]

conditional execution has some little wrinkles.

cmd> if "%option%" == "test" set /a x=3 [the /a is for arithmetic]

psh> if ("$option" -eq "test") { $x=3 } [more like C# program syntax]

bash> if ["$option" == "test"]; then let x=3; fi [if-then-fi delimits action]

6 A Word-Frequency Task using CMD, PSH and BASH — c©2008 Dr Gonzo Publishing

executing a chain of commands is very similar in all these shells.

cmd> now & freq 15 big.txt & now [the & separates subsequent commands]

psh> now; freq 15 big.txt; now [the ; separates subsequent commands]

bash> date; freq 15 big.txt; date [the ; separates subsequent commands]

defining aliases is quite different in each shell.

cmd> doskey freq="%HOMEPATH%\freq.bat" $* [$* means all script parameters]

psh> function freq($n,$text) { & "$HOME\freq.ps1" $n $text } [note parameters]

bash> alias freq=’$HOME/freq’ [requires no parameter spec.]

control loops have some slight differences in format.

cmd> for %a in (%LIST%) do (

call script.bat %a) [note ’call’ to invoke script]

psh> foreach ($a in $LIST) {

./script.ps1 $a } [note $a PERL heritage]

bash> for f in $LIST; do ./script $f; done [do-done delimits the action]

But watch out for these . . .

multi-line command editting is very different. I consider it completely broken in cmd and psh.

cmd> for %a in (%LIST%) do (

More? call script.bat %a

More?) [now press the UP ARROW to edit this]

cmd>) [which is useless; it’s only the last character typed]

psh> foreach ($a) in ($LIST) {

>> ./script.ps1 $a

>> } [now press the UP ARROW to edit this]

psh> } [which is useless; it’s only the last character typed]

bash> for f in $LIST

> do

> ./script $f

> done [now press the UP ARROW to edit this]

bash> for f in $LIST; do ./script $f; done [the whole command ready to edit]

when referring to multiple items be careful with the unusual comma-delimited list.

cmd> del a b c [works fine]

cmd> type a b c>x [works fine]

A Word-Frequency Task using CMD, PSH and BASH — c©2008 Dr Gonzo Publishing 7

psh> remove-item a,b,c [you need commas, not spaces]

psh> cat a,b,c >x [you need the space in ’c >’]

bash> rm a b c [works fine]

bash> cat a b c>x [works fine]

getting user input from the terminal has some idiosyncracies.

cmd> set /p file="enter filename< " [gets a file name from user]

psh> $file=read-host -prompt "enter filename< " [gets a file name from user]

bash> read -p "enter filename < " file [gets a file name from user]

paging a file within a script in psh fails to return when you quit using out-host -paging or

more; both are completely broken — you need the older C:\WINDOWS\system32\more instead!

psh> get-content $file|C:\windows\system32\more NOT: get-content $file|more

timing a Command: if you want to time how long a script takes, bash does that and produces

the normal result of the script, but psh fails to produce the result of running the script at all!

cmd> now & script.bat & now [works fine, but calculate time yourself]

psh> measure-command {./script} [produces NO OUTPUT from the script]

bash> time ./script [normal output plus execution time]

