
SCRIPTING with CMD + PSH + BASH —— c©2008 Dr Gonzo Publishing 1

Introduction

The Linux Supporters Group (LSG) aims to share experience and advice to solve computer problems.

One such problem occurs for Windows refugees who dual-boot the debian, slackware, ubuntu

&c. variants of Linux, namely: that desktop menus, while useful, are nowhere near sufficient for

doing some real work – i.e., solving problems for which no menu item exists. As you become familiar

with the command-line, you’ll find that this extends to cover many tasks that you’ll want to do.

asm — basic — C

You can do anything at all on a PC using assembler. Of course basic was invented to avoid

assembler. Clearly C was invented to avoid basic. It is obvious that the shell was invented to avoid

programming in C. Some even believe that the GUI was invented to avoid the shell . . .

cmd — psh — bash

Users of MS-DOS (command.com) have a very primitive method for doing things, and historically

thousands of them have routinely turned to augmenting that operating system by programming in

8086 assembler, basic and/or in C. Countless improvements and additions to DOS were circulated

amongst enthusiasts between about 1985 and 1995, without any official support: FreeDOS, 4DOS,

4NT, the Hamilton-CShell, – most spectacularly Linux and bash – were all born through this

movement. The NT series introduced some improvement with cmd.exe, but it remains awkward to

use. The Vista distribution has been recently released, but without the promised new shell and

scripting language known as monad (now powershell).

It is easy to install cygwin on an XP machine. This gives you the Linux CLI. In addition, cmd.exe

runs natively on XP, and powershell v1.0 was released to try out on XP around November 2006.

What is a Shell ?

A shell is a program, running at a terminal, that executes commands that are typed in response to

its prompt. The shell processes user commands and scripts which are stored sequences of previously-

debugged commands. With the shell you can build up a wide range of your own re-useable applica-

tions with a meccano-like set of small tools.

It is a whole lot easier and much more productive to write simple tools using the command line

than it is to wrestle with graphical toolkits.

So, what commands can I use?

When you start out using the command-line, it’s all a bit of a mystery. You do not have any idea of

what commands are available, how to implement them or what they can do to solve your particular

problem.

2 SCRIPTING with CMD + PSH + BASH —— c©2008 Dr Gonzo Publishing

Let’s teach you how to fish

This talk compares the three shells cmd, psh and bash by constructing a simple application using

each shell that allows you to explore the various available commands at random. This way you can

discover new commands that you did not know were possible or available on your system. Once you

know these available commands you can start exploring the command line for yourself.

Browsing the manuals of the available commands

The first thing we do is to make a list of all the commands; builtin shell commands and scripts and

executables. Once we have a list of all the commands, we can get the help file or the manual for

each command, and view the first few lines of it. We shall now implement this plan in each shell.

CMD: complete script to browse manuals

You can normally get help on a program in NT by typing (e.g.) help cmd. Many programs don’t

use this, instead needing the form (e.g.) cipher /? or (e.g.) arp -h. Many have no help at all . . .

1 :: explore.bat usage: explore.bat [numberofscreenlines]

2 echo off & setlocal enableextensions enabledelayedexpansion

3 if [%1]==[] (set /a lines=20) else (set /a lines=%1)

4 echo this list of executables is from C:\WINDOWS\system32>exe.lst

5 echo for getting help on ’prog.exe’, try typing ’prog /?’>>exe.lst

6 echo or use ’windows server 2003 resource kit tools help’>>exe.lst

7 dir /B C:\WINDOWS\system32|find ".exe">>exe.lst & more exe.lst

8 help|find /v "For more info"|find /v " ">help.tmp

9 help|more & del help.ran>nul

10 for /f "tokens=1" %%c in (’type help.tmp’) do (

11 echo !RANDOM! %%c>>help.ran)

12 type help.ran|sort>help.lst

13 for /f "tokens=2" %%c in (’type help.lst’) do (

14 cls & help %%c>man & if exist man call :peruse

15 echo. & set /p answer="q=quit, enter=next< "

16 if /i "!answer!"=="q" (endlocal & goto :EOF))

17 goto :EOF

18 :peruse

19 set /a count=%lines%

20 for /f "tokens=*" %%m in (’type man’) do (

21 echo %%m & set /a count=!count!-1

22 if "!count!"=="0" goto :EOF)

SCRIPTING with CMD + PSH + BASH —— c©2008 Dr Gonzo Publishing 3

CMD: explanation of script

This DOS batch file is run by setting an alias pointing to the script, and then invoking it:

cmd> doskey explore="%HOMEPATH%\explore.bat" $* & explore 25

line 1 is a comment (::) with the program name and how to use it.

lines 2 and 3 set necessary options for processing this script. They default the display lines to 20

unless this is specified on the command line.

lines 4 to 7 prepare a listing of the executable programs usually found in C:\WINDOWS\system32.

Many of these have no on-line help, or fail to respond properly to the usual help commands

(prog.exe /? or prog.exe -h) so we just get a list to look at instead of any actual help.

lines 4, 5 and 6 are just useful information for the heading of this list.

line 7 finds all the .exe files in the system directory, list only their names (/B) and add them all

to the temporary file (>>exe.lst), then views the list on the screen using the more pager.

lines 8 and 9: In cmd.exe a list of all the system commands can be constructed by getting the

normal help listing (help) which shows all the system commands and a synopsis of each one

(try it); we do not use the first line (find /v "For more info") nor any of the continued

lines starting with 8 spaces (find /v " "). We also have look at the help synopsis.

lines 10 to 12 make a list of commands in random order. Take each line of the help file we saved

(type help.tmp) and select the first field ("tokens=1") of each line, which is put into a

variable called c; generate the next random integer (!RANDOM!) and write that integer and the

command name (%%c) both onto the next line of help.ran. Then put the commands into a

random order by sorting on the random integers (sort).

lines 13 and 14 take each line of the randomised help file we saved (type help.lst) and select

the second field ("tokens=2") of each line (the command name) which is put into a variable

called c. The screen is cleared and the help information for that command is redirected to a

temporary file (help %%c>man); then the desired number of lines of that help is printed on the

screen by the subroutine (call :peruse);

line 15 prompts you for a decision (set /p answer="q=quit, enter=next< ") and then reads

your response into a variable called answer.

line 16 quits this script if q or Q was pressed (if /i "!answer!"=="q") or returns to the next

command in the for loop otherwise. (Note that enabledelayedexpansion with the variable

in the form !answer! rather than the normal %answer%, is crucial for getting this to work).

lines 18 to 22 are the peruse routine which prints %lines% of file man by counting down to zero.

4 SCRIPTING with CMD + PSH + BASH —— c©2008 Dr Gonzo Publishing

PSH: complete script to browse manuals

Note that you can get help on a topic in psh by typing at the prompt (replacing topic with the

command name or a guess at it): psh> get-help topic -full|more (but I warn against more).

For now, in your home directory, open up a notepad file called explore.ps1 and enter this text:

1 # explore.ps1 make executable: psh> set-executionpolicy remotesigned

2 # make alias: psh> function explore($n) {& $HOME\explore.ps1 $n}

3 $n=[int]$args[0]

4 $lines=20; if ($n -gt 0) {$lines=$n}

5 get-childitem $env:WINDIR\system32*.exe|select-object name|C:\WINDOWS\system32\more

7 get-command|select-object name|tee command.names|C:\WINDOWS\system32\more

8 $random=new-object random

9 if (test-path -type leaf -path nnp.tmp) {remove-item nnp.tmp}

10 foreach ($line in $(get-content command.names)) {

11 add-content -path nnp.tmp -value "$($random.next()) $line" }

12 get-content nnp.tmp|sort|set-content -path sort.tmp

13 if (test-path -type leaf -path names.tmp) {remove-item names.tmp}

14 foreach ($line in $(get-content sort.tmp)) {

15 $name="$line".split(’ ’,[stringsplitoptions]::removeemptyentries)|‘

16 select-object -first 2|select-object -last 1

17 add-content -path names.tmp -value "$name" }

18 $COMMANDS=$(get-content names.tmp|

19 where-object {$_ -notmatch "Name"}|where-object {$_ -notmatch "----"})

20 foreach ($command in $COMMANDS) {

21 get-help $command > man.tmp

22 if (test-path -type leaf -path man.see) {remove-item man.see}

23 $MANUAL=$(get-content man.tmp|where-object {$_ -notmatch "^[‘t]*$"})

24 foreach ($line in $MANUAL) {"$line" >> man.see}

25 clear-host

26 if (test-path -path man.see -type leaf) {

27 get-content man.see|select-object -first $lines}

28 write-host ""; $ans=read-host "q=quit, enter=next< "

29 if ("$ans" -eq "q") {

30 $n=$(get-content command.names).length

31 write-host " found $n powershell cmdlets";

32 remove-item command.names,sort.tmp,nnp.tmp,names.tmp,man.tmp,man.see

33 exit 1}

34 }

35 exit 0

SCRIPTING with CMD + PSH + BASH —— c©2008 Dr Gonzo Publishing 5

PSH: explanation of script

lines 1 and 2 are comments (#) with the name of the script (explore.ps1) and some usage infor-

mation: how to point to the script and then execute it.

lines 3 and 4 set the number of screen display lines, if you put it on the command line by typing,

for example, explore 30 (but you may leave it off and it defaults to 20).

line 5 lets you see all the executables. It makes a list of the commands by searching the directories

that contain the commands. In psh.exe executables are mostly in $env:WINDIR\system32.

line 7 gets a list of all the possible shell commands or commandlets (get-command); out of the

listing we select only the name of the command (select-object name) and save all these

names into a temporary file (tee command.names) before viewing on-screen.

lines 8 to 11 prepare to generate random numbers, like this: create a random-number-generator

by making a new object of that type ($random); delete any previous file named nnp.tmp; for

each command name on a line in our list of commands generate a random number to tag it

with ($random.next()) and add it, with the name of the command, as a number+name pair

(e.g. 2987647 Set-Content) to a file called nnp.tmp.

line 12 puts those command names into random order, by sorting the file nnp.tmp on the random

numbers, thus sorting the commands into random order, and saves in sort.tmp;

lines 13 to 17 remove any existing file names.tmp; for each line in our sorted file, consisting of a

number and a command name (such as 2987647 Set-Content), split the line in two, discard

the first part (the number) and select the second part (the name) and add that name to the

temporary file names.tmp.

lines 18 and 19 get a list of the commands. The file names.tmp has a heading and a line (Name

and ----) which we need to ignore while making a list of the commands in random order.

This list is then saved in a shell variable called $COMMANDS.

lines 20 starts looping through every $command in our $COMMANDS list.

line 21 puts the help information for the command into a file (man.tmp).

lines 22 and 23 strip out blank lines from the manual listing to compact it: (-notmatch "^[‘t]*$")

meaning reject lines that start (^) but then only have spaces or tabs of any number ([‘t]*)

before the end of the line ($);

line 24 adds all such stripped-down lines to the man.see file.

lines 25 to 27 clear the screen (clear-host); if the manual exists then the first $lines are selected

and displayed on the screen.

lines 28-33 give a choice to continue to the next command by prompting for a response into a

variable ans ($ans=read-host "q=quit...); if that response is q then it quits after cleaning

up; otherwise it goes on to the next manual (the last } on line 34).

6 SCRIPTING with CMD + PSH + BASH —— c©2008 Dr Gonzo Publishing

BASH: complete script to browse manuals

You can get help on any topic in bash by typing at the prompt: man topic (or if you have a guess

at the keyword) man -k topic. Save the following script as explore in your home directory:

1 #!/bin/bash

2 # explore manuals for linux commands in random order so discover new ones

3 # setup: chmod a+rx explore; echo "alias explore=’$HOME/explore’">>.bashrc

4 # setup: source .bashrc # to invoke: explore OR(eg) explore 40

5 if [-z "$1"]; then let lines=20; else let lines=$1; fi

6 directories="/bin /sbin /usr/bin /usr/sbin /usr/local/bin"

7 commands=$(/bin/ls $directories|grep -v /)

8 commands="$commands builtins"

9 echo $commands \

10 |tr ’ \t’ ’\n’ \

11 |grep -v "^[\t]*$" \

12 |sort -u \

13 |tee explore.commands \

14 |tr ’\n’ ’ ’ \

15 |fold -s -w 80 \

16 |less

17 rm -f explore.random

18 for command in $(cat explore.commands)

19 do

20 echo "$RANDOM $command">>explore.random

21 done

22 commands=$(cat explore.random|sort -n|awk ’{print $2}’)

23 for prog in $commands

24 do

25 clear

26 man $prog|col -b|grep -v "^[\t]*$"|head -$lines

27 echo; read -p "q=quit, enter=next< " ans

28 if ["$ans" == "q"]; then break; fi

29 done

30 echo "found $(cat explore.commands|wc -w) user commands"

31 rm explore.commands explore.random

32 exit 0

SCRIPTING with CMD + PSH + BASH —— c©2008 Dr Gonzo Publishing 7

BASH: explanation of script

line 1 just says to use the program /bin/bash as the interpreter for this script.

lines 2,3 and 4 are comments starting with #, showing usage information. The echo adds the alias

to .bashrc to ensure that it is re-established every time you open a terminal.

line 5 sets the number of display lines if it is specified on the command line, otherwise it defaults

to 20 lines.

line 6 defines a list of directories that contain commands. In Linux these directories are generally:

/bin for normal binaries; /sbin for system binaries; /usr/bin /usr/sbin /usr/local/bin.

lines 7 and 8 make a list of files that are in these directories, and store that list in a shell variable

named commands for use, as well as adding the builtins manual page to the list.

lines 9 to 16 look at them all by running the commands though a pipeline. In English, this means:

list our commands on the screen (echo $commands) one per line by converting spaces and tabs

to newlines (tr ’ \t’ ’\n’) and ignoring any blank lines (grep -v "^[\t]*$") (lines that

start and have only spaces and tabs before ending), so we can get them into alphabetical order

of unique commands for viewing (sort -u); save them for future manipulation in a temporary

file (tee explore.commands) then change all the line feeds (\n) back to spaces (’ ’) so the

commands appear on one long line (tr ’\n’ ’ ’); format this line (fold) so that it breaks

the line and starts a new one but only where there is an existing space (-s), and let it go

across the screen for a width of 80 columns (-w 80); and let us see them all by pausing inside

a paging program (less).

All that done in one line! — Well, was that like pulling teeth, or what?

lines 17 to 21 generate and store random numbers. There are over 1800 user commands in a

typical Linux distribution. From the point of view of discovering available commands on your

own, it is better to peruse the commands at random, so that every time you explore the

commands different ones come up for consideration. This way you can become familiar with

new possibilities. In English: remove any existing random file; for every command in our list of

commands, generate a new random number ($RANDOM, which is an environmental variable) and

add that random number and the command name to a temporary file (>>explore.random).

line 22 replaces our list of commands with this list, ordered numerically (sort -n, which effec-

tively makes a random list of commands) and then selecting the 2nd field of each record

(awk ’{print $2}’) ignoring the 1st field, which is the number used to randomise it.

lines 23 to 29 browse the first $lines of the manual for every command, which should be enough

to give you a good idea of the command, which means: for every single program (prog) that is

in our list of programs ($commands) do the following set of operations (between the do and the

done); clear the screen to give us a clean pallette (clear); look at the manual for that program

(man $prog); remove any formatting commands in the manual (col -b) and compact it a bit

by ignoring any blank lines (grep -v "^[\t]*$") (lines that start and have only spaces and

tabs before ending), but only so many as fit on a screen easily (head -$lines).

8 SCRIPTING with CMD + PSH + BASH —— c©2008 Dr Gonzo Publishing

line 27 when the first $lines of that manual are on the screen, ask us if we want to bomb out or

look at the next command manual; then read our typed response into a variable (ans).

line 28 checks if the response is ’q’ (if ["$ans" == "q"]) then (then) break out of this do-done

loop (break) to line 30 and thus exit the program; otherwise just go on to the next command

in the loop by ending the ’if’ condition (fi) and complete the do-done loop (done).

lines 30 to 32 summarise the number of commands that were found on the system by doing a

word count (wc -w) on the command list (explore.commands) before cleaning up temporary

files and exit.

Comparison of Shells

Make sure you look for and utilise all or most of these features (in alphabetical order):

– Aliases – Case conditional branching – Command chaining – Command-line expansion – Con-

ditional execution of subsequent commands – Conditional If-Then-Else – Error return codes – His-

tory – Job control Foreground/Background processing; – Loops For-While-Until – Menu creation

– Positional parameters – Quoting and Escaping – Redirection – Sequential execution via pipes –

Script-capture for analysis.

Refer to the description of each shell script (preceeding pages) to see how you can get help on a

topic in these shells by typing topic or a guess at it at the command prompt.

parameter specification is very similar in all shells.

cmd> %1 %2 [but you need to use %%1 %%2 in a batch file]

psh> $1 $2 ... $9 [but there’s no ’shift’ command! - what were they thinking?]

bash> $1 $2 ... $9 [and you use ’shift’ to feed in more variables > 9]

variable allocation has some tricks up its sleeve.

cmd> set n="%1" [generally] set /a n=%1 [for numbers]

psh> $n="$1" [generally] $n=[int]$1 [for numbers]

bash> n="$1" [generally] let n=$1 [for numbers]

referring to variables is very similar in all shells.

cmd> echo %filename%

psh> out-host "$filename"

bash> echo "$filename"

continuing command lines is very similar in all these shells.

cmd> type file.txt | ^ [the circumflex ^ continues lines]

psh> get-content file.txt | ‘ [the backtick ‘ continues lines]

bash> cat file.txt | \ [the backslash \ continues lines]

SCRIPTING with CMD + PSH + BASH —— c©2008 Dr Gonzo Publishing 9

conditional execution has some little wrinkles.

cmd> if "%option%" == "test" set /a x=3 [the /a is for arithmetic]

psh> if ("$option" -eq "test") { $x=3 } [more like C# program syntax]

bash> if ["$option" == "test"]; then let x=3; fi [if-then-fi delimits action]

executing a chain of commands is very similar in all these shells.

cmd> now & freq 15 big.txt & now [the & separates subsequent commands]

psh> now; freq 15 big.txt; now [the ; separates subsequent commands]

bash> date; freq 15 big.txt; date [the ; separates subsequent commands]

defining aliases is quite different in each shell.

cmd> doskey freq="%HOMEPATH%\freq.bat" $* [$* means all script parameters]

psh> function freq($n,$text) { & "$HOME\freq.ps1" $n $text } [note parameters]

bash> alias freq=’$HOME/freq’ [requires no parameter spec.]

control loops have some slight differences in format.

cmd> for %a in (%LIST%) do (

call script.bat %a) [note ’call’ to invoke script]

psh> foreach ($a in $LIST) {

./script.ps1 $a } [note $a PERL heritage]

bash> for f in $LIST; do ./script $f; done [do-done delimits the action]

But watch out for these . . .

multi-line command editting is very different. I consider it completely broken in cmd and psh.

cmd> for %a in (%LIST%) do (

More? call script.bat %a

More?) [now press the UP ARROW to edit this]

cmd>) [which is useless; it’s only the last character typed]

psh> foreach ($a) in ($LIST) {

>> ./script.ps1 $a

>> } [now press the UP ARROW to edit this]

psh> } [which is useless; it’s only the last character typed]

bash> for f in $LIST

> do

> ./script $f

> done [now press the UP ARROW to edit this]

bash> for f in $LIST; do ./script $f; done [the whole command ready to edit]

10 SCRIPTING with CMD + PSH + BASH —— c©2008 Dr Gonzo Publishing

when referring to multiple items be careful with the unusual comma-delimited list.

cmd> del a b c [works fine]

cmd> type a b c>x [works fine]

psh> remove-item a,b,c [you need commas, not spaces]

psh> cat a,b,c >x [you need the space in ’c >’]

bash> rm a b c [works fine]

bash> cat a b c>x [works fine]

getting user input from the terminal has some idiosyncracies.

cmd> set /p file="enter filename< " [gets a file name from user]

psh> $file=read-host -prompt "enter filename< " [gets a file name from user]

bash> read -p "enter filename < " file [gets a file name from user]

paging a file within a script in psh fails to return when you quit using out-host -paging or

more; both are completely broken — you need the older C:\WINDOWS\system32\more instead!

psh> get-content $file|C:\windows\system32\more NOT: get-content $file|more

timing a Command: if you want to time how long a script takes, bash does that and produces

the normal result of the script, but psh fails to produce the result of running the script at all!

cmd> now & script.bat & now [works fine, but calculate time yourself]

psh> measure-command {./script} [produces NO OUTPUT from the script]

bash> time ./script [normal output plus execution time]

Further Assistance

There are some great books in the computer section of certain bookshops, and also some web sites

that I can thoroughly recommend.

for learning bash a very good book at every level of expertise is A Practical Guide to Linux:

Commands, Editors and Shell Programming by Mark Sobell.

also for bash there is a great tutorial by Mendel Cooper called Advanced Bash-Scripting Guide:

An in-depth exploration of the art of shell scripting at http://www.faq.org/faqs/

to blow your mind Rob Flickenger’s Linux Server Hacks: 100 Industrial-Strength Tips & Tricks

for learning powershell the best book I have come across that gets you up to speed straight away

without any crap is Professional Windows Powershell by Andrew Watt.

and for cmd – well, best of luck! The FAQ file compiled by T. Salmi called tscmd.zip is listed

near the bottom of http://garbo.uwasa.fi/win95/dosshell.html and is magnificent; and

the Server 2003 Resources Kit contains a good reference manual in GUI form.

