
Adventures with DIFF

Barry Dwyer

Abstract

diff is a Unix/Linux utility supported by the Free Software Founda-
tion. It enables line by line comparison of two files. I shall discuss four
things:

1. The proofreading task that spurred me to write this,

2. Using diff to compare student assignments, and how it led to a
friend making a lot of money,

3. Using diff to compare directories and possibly save me from disas-
ter.

4. How diff works, and Dynamic Programming.

diff

The simplest use of diff is as follows:

diff file1 file2

If file1 and file2 are text files, diff will compare them line by line and report
where they differ. If they are binary files, diff will simply say whether they
are the same. If they are directories, diff will report where differ, and it can
be asked to search their subdirectories recursively.

diff has many options, for example, to ignore the difference between upper
and lower case, to ignore white space, etc. If you want the full story, type

man diff | less

1 Fun with LATEX.

As I’m sure I have made you aware, I have published a textbook, which contains
lots of diagrams, tables and mathematical formulae. I submitted the manuscript
to the publisher as series of .tex files, and they then typeset it. To illustrate
how LATEX works, I made the above section heading by typing,

\section{Fun with {\LaTeX}.}

and LATEX set it in its default style. But publishers like to use their own house
styles: different fonts, spacing, page geometry, etc. LATEX makes this possible
by letting the typesetter include a ‘style’ file at the start of the document—a bit
like a cascading style sheet in HTML. The publisher then returned the result for
me to proofread as a PDF. Where they had corrected something, but were not

1



sure they had done it right, they attached a note to the PDF. Unfortunately, they
confidently ‘corrected’ a lot of other things they didn’t tell me about. Here’s an
example of one of their corrections,

Has Parent = {Peter 7→ Mary ,Peter 7→ Mark , Mary 7→ Jane,Mary 7→ Paul}

and here is my original,

Has Parent = {Peter 7→ Mary ,Peter 7→ Mark ,Mary 7→ Jane,Mary 7→ Paul}

Can you spot the difference? I was supposed to eyeball 500 pages of this
stuff looking for differences like that. I decided that it was just too hard, so I
asked them to send me their .tex files. When they finally agreed to do this,
I ran diff to tell me what they had tampered with—which turned out to be
quite a lot. Here is one of the things it told me,

997c997

< {\var{Peter}}\mapsto {\var{Mark}},\var{Mary}\mapsto \var{Jane},

---

> {\var{Peter}}\mapsto {\var{Mark}},\ \var{Mary}\mapsto \var{Jane},

which told me that at line 997 of each file there is a change (c): the typesetters
had effectively replaced my version of the line by theirs. They had forced an
extra space to appear between Mark and Mary. I wouldn’t have minded, but,
to be consistent, they should either have put extra spaces between Mary and
Peter, and Jane and Mary, or simply have left well enough alone. Thank you,
diff, for saving me from going word-blind!

2 Catching Cheats

One of the joys of teaching computer science was setting and marking practical
work, which usually consisted of writing a program or two. Give a student
twelve weeks to complete an assignment, and they will begin in week eleven. So
we usually set assignments that could be completed in stages, and set deadlines
every couple of weeks or so.

Practical work has to be worth a few marks, or no-one will do it; too many
marks, and the poorer students will cheat. Catching the cheats is what marking
is all about.

The first tool we used was diff. If two assignments showed only few differ-
ences, we could be pretty sure one student ‘helped’ the other, either wittingly
or unwittingly.

• The first problem is that diff compares lines, so changing a few line
breaks will cause diff to find more differences.

• The second problem is that the order in which parts of a program are
defined is usually fairly flexible, so shuffling the code can defeat diff too.

• The third problem is, with a class of 100 students, there are 4,950 pairs
of assignments to compare.

Our first solution to the first problem was to pass the programs through a
filter that ignored the students’ white space and line breaks. Instead it inserted

2



line breaks after semicolons, which mark the ends of logical statements in many
programming languages. Unfortunately, there are other languages that use full-
stops rather than semicolons, and yet others that actually use line breaks. In
the end, we broke lines in an arbitrary, language-independent, way: If a group of
four characters had ASCII codes that hashed to some magic value, we inserted
a line break. This divided the file into what are now called blocklets.

To solve the second problem, we simply sorted the lines before passing them
to diff.

To solve the third, we hashed each line. In case you don’t know, a hash value
is a number obtained from the text by some mystic calculation. If two lines have
the same hash value, they are probably, but not necessarily, the same; if they
have different values, they are definitely different.

One way to compute a hash value is to regard the binary representation of
the text as a huge number, divide it by a suitably large prime, then take the
remainder. The result must lie between zero and one less than the prime. The
bigger you make the prime, the less the chance two different lines will have
the same hash. This doesn’t solve the problem of comparing 4,950 pairs of
assignments, but it is much quicker to compare numbers than texts.

In the end, we found that the best way to discover cheats was to go back to
diff, pure and simple. We just compared each stage of a student’s work with
the previous one. Slow and steady progress, no worries; a sudden surge in diff

output, highly suspicious!
However, all those other ideas eventually made one of my friends a few

million dollars—which is really the point of this whole story. He was completing
a PhD thesis on data compression, and could see how these thoughts could be
translated into a useful product. If two texts hash to the same value, they are
probably the same. If we choose a big enough prime number, the probability
becomes a virtual certainty. Combine that with a trapdoor algorithm, and the
result is a digital signature. One of the properties of a digital signature is that
it is very hard to forge: it is practically impossible to construct a different text
that gives the same signature. A signature can be used to verify, for example,
that a money transfer has not been tampered with.

Now combine signatures with blocklets. If we want to back up a file over
the Internet for the first time, we have to transmit all its blocklets. But if we
make updates, we only need to send the server the blocklets that have changed.
What we do is to send their signatures. The back-up server checks if it already
has blocklets with all those signatures, and tells us which ones it doesn’t have.
We only need to send the server the missing ones.

The outcome was that a big US remote back-up service provider paid my
friend megabucks for his patent rights. It meant the provider could give their
customers faster service, while needing less storage and paying less for data
transmission.

3 A Scary Time with Directories

Like most of us, I use one account for general use (‘barry’), and another, ‘admin’
for system maintenance. Poking around in admin on my laptop, I was a bit
surprised to see a ‘Documents’ directory with apparently the same content as
the one in barry. I thought maybe I should delete all the files in admin, which

3



were unwanted duplicates. To see if they were indeed the same, I typed,

cd /

sudo diff -r /Users/admin/Documents/ Users/barry/Documents/

My idea was to check for any differences between the two directories, recursively
(-r). The amount of output was a overwhelming: diff displayed hundreds
of files called ‘.DS_Store’ in barry, but not in admin. It turned out that
.DS_Store files are ones that MacOS uses to remember the positions of icons,
so they were pretty much irrelevant. If there were any relevant differences, I
couldn’t find them. So I typed,

diff -r -x ’.DS_Store’ /Users/admin/Documents/ Users/barry/Documents/

which gave a much more sensible result, showing only a dozen or so differences.
(The ‘-x’ option allowed me to exclude all files matching .DS Store.)

Where had the Documents files come from? At first I thought it had some-
thing to do with the magic of iCloud. I use the same Apple ID to download
software to admin as I use to download music files to barry. Did the common
Apple ID mean my laptop was uploading documents from barry to iCloud, then
downloading them from iCloud to admin? If that was true, deleting the admin

copy would delete the iCloud copy and delete the barry files too. Scary!
The fact that were some differences between the directories was encourag-

ing, and so was the fact that my admin/Documents directory on my desktop
computer was virtually empty.

So where did the admin documents come from? I eventually recalled that
when I first bought the new laptop I chose an option to migrate everything
across from my old laptop. MacOS unwisely decided that since barry was the
proud owner of a new computer, barry would need admin privileges. It wouldn’t
let me then create a second admin account, so I had to rename barry to admin,
then create an ordinary user called barry. My admin account now contained my
migrated documents but my barry account had none. But once I had signed
in to iCloud, Apple magic took over and my laptop’s Documents directory had
been synchronised with the desktop’s. Panic over, and I could confidently delete
the admin documents!

So much for logic! So much for confidence! It didn’t happen straightaway.
It happened overnight! The next day all my documents had disappeared from
both accounts on both computers. And iCloud. And my iPhone. And my iPad.

Thank goodness for automatic back-ups!

4 How diff Works

If file1 contains lines A, B, C, D, E, and file2 contains lines B, C, D, E,
A, then I want diff to tell me that file2 has A missing before B, C, D, E,
and A added after them. I don’t want diff to say that file2 has B, C, D, E
added before A, and B, C, D, E missing after it. In other words, I want diff

to find the fewest number of changes that can make the files agree. Obviously
diff can’t do this by comparing one line at a time. It needs to look ahead. The
number of lines it looks ahead is called its horizon, which can be controlled by
a command option. Even so, the problem of finding the fewest changes is not
trivial.

4



Table 1 shows how the optimum choices are made. Each cell of the table
represents a possible state of matching. For example, the cell in row B, column
D represents a state where lines A, B, C, and D have been read from file1 but
only line B has been read from file2. The number in each cell is the minimum
penalty to reach that cell, where we assign a penalty of 1 for each insertion or
deletion, but zero penalty when lines match. We regard a changed line as an
insertion plus a deletion.

– A B C D E

– 0 1 2 3 4 5

B 1 2 1 2 3 4

C 2 3 2 1 2 3

D 3 4 3 2 1 2

E 4 5 4 3 2 1

A 5 6 5 4 3 2

Table 1: Possible optimal states of matching two files. Moving left to right
means accepting a line from file1 without accepting a line from file2, and
incurs a penalty of 1. Moving top to bottom means accepting a line from file2

without accepting a line from file1, and also incurs a penalty of 1. Moving
diagonally top-left to bottom-right means accepting a line from both files. It
incurs zero penalty if the lines match, otherwise it incurs a penalty of 2. The
optimal sequence of moves is highlighted in bold type.

The best way to get to row B, column D, for example, is to read line A from
file1, match B from both files, then read C and D from file1. This incurs a
penalty of 3. If we had chosen to read A, B, C and D from file1, then to read
B from file2, that would have incurred a penalty of 5. (The state represented
by the cell in row B, column D is not part of the optimum solution!)

The number of cells in the table is proportional to the product of the lengths
of the files if they are short enough, otherwise it is proportional to the square of
the horizon. Clearly, the size of the table is also a measure of how long it takes to
find the best solution. With a horizon of 100 lines, we need to calculate 10,000
cells. However, we do not need to store the entire table. It can be developed
row by row: we only need to store the current row and the next row.

Although this might seem tedious, it is better than the obvious approach.
At each step we can either read file1, read file2, or read both. We must
therefore make a 3-way decision at least 100 times. That gives over 3100 (about
5× 1047) alternatives. Quite impractical!

The way diff matches files is exactly analogous to how a spell checker counts
spelling mistakes, and how Auto-Correct guesses what you are trying to type.
They are both examples of dynamic programming problems.

This use of the word ‘programming’ has nothing to do with computer pro-
grams. It means organising a sequence of actions. The dynamic programming
principle was originally devised in connection with NASA’s attempts to land a
man on the moon.

The dynamic programming principle is this:

The best way to get from A to B via C consists of the best way to
get from A to C, followed by the best way to get from C to B.

5



That seems so obvious that it can’t be useful, especially since it doesn’t tell
us how to choose C. What it does tell us is that we only need to remember one
way of getting from A to C —the best one. Then we can take each possible C
in turn and figure out how to get to B.

Have you ever wondered why the output from LATEX looks so much more
professional than the output from a word processor?

A word processor justifies one line at a time. When a line overflows, it must
decide whether to shrink the spacing to get the current word to fit, expand the
spacing to let it overflow, or choose some place to hyphenate it. The result is
that the line is split in absolutely the best place, given what came before. The
problem is that splitting line 1 in the best place may leave line 2 with only some
really bad choices. Does this problem begin to sound familiar?

LATEX, on the other hand, sets a whole paragraph at a time—using dynamic
programming. Look at line 3 of the previous paragraph. It is a little widely
spaced. LATEX probably debated whether to squeeze ‘that’ onto line 3, but
decided not to, because line 4 would not be able to squeeze in the word ‘problem’
without hyphenating it or narrowing the spacing too much. It chose the break
that incurred the least penalty for the whole paragraph.

LATEX extends this policy to laying out a whole page, often expanding or
shrinking the spacing between paragraphs a little to avoid widows and orphans.

6


