

IMAGE PROCESSING
with

ADSS

Peter Perry
DSTO

(Contractor)

Basic Concepts

● Image Processing in stages
– Each stage is (relatively) simple.

– Many stages are reusable.

● Unix/Linux can run stages in Parallel
– If each is a separate process.

– How could they communicate?

Inter-Process Communication

● Unit processes have three 'automatic' files.
– stdin – Standard Input

– stdout – Standard Output

– stderr – Standard Error

● Unix/Linux allows us to 'pipe' processes.
– A pipe is an area of memory

– Maintained by the operating system

– One process writes to it (uses it as stdout)

– Second process reads from it (as stdin)

Simple Pipe Example

● Can pipe stdout of one process to stdin of next
– This is called a “filter”

– cat *.c

– cat *.c | grep image

– cat *.c | grep image | grep input

– cat *.c | grep image | grep input | sort

● Can put together quite powerful commands
like this.

So to ADSS

● Write a program that
– reads commands from stdin

– Does some simple image processing
(really well and quickly)

– Writes its results to stdout

● Link the programs together using pipes
– That is ADSS

Sample ADSS processing

● A synthetic aperture radar (SAR) image
– Bright returns are usually man-made objects

● So find the bright pixels in the image.
– Define “bright” statistically

– Many will just be noise

– Where there are clumps, it is probably a target.

● The cluster the clumps together
● Then select clumps based on some criteria

Our ADSS Chain

Bright Cluster Discrim

Command and Data Language

● Text-based language describes:
– The processing steps

– The module parameters

– The image(s) to be processed

The Processing Steps

● (process command prescreen “ata”)
(process command cluster “clusterer”)
(process command discrim “simple-features”)

● (process create pipeline
 prescreen cluster discrim)

The Configuration

● (config prescreen
 (threshold-sd-over-mean 4.0)
 (guard-size 20)
 (outer-limit 25)
 (input-image main))

● (config cluster
 (cluster-distance 5)
 (input-image main))

● (config discrim
 (minimum-pixels 20))

The Image

● (input-image main isr “images/test-image.isr”)
● (available main 1024)
● (images-done)
● (exit)

Module Operation

Each module has a single input stream and single output stream

ADSS
module

CDL Messages
(input)
Module Configuration
Image messages

Detections (from
previous stage(s))

Miscellaneous
messages (from
previous stage(s))

CDL Messages
(output)

Modified (e.g. grouped)
Detections

Extra imagery (e.g.
segmentation)

Miscellaneous messages

The Output

● The first stage will describe the bright pixels it
found:

– (detection (main (x 125) (y 115))
 (thresholded-value 4.78)
 (history prescreen))

● The second stage will cluster these:
– (detection (main (x 100) (y 112))

 (bounds (x 98 8) (y 111 4))
 (rle-data (main (2 5) (0 3 2 3) (0 8) (4 2))
 (thresholded-value 5.2) (detected-pixels 21)
 (history cluster prescreen))

The Project

● Started 1997 by Dr Nick Redding
● I joined in January 2002

– 8 modules supporting two image formats

● Currently a team of 10 contractors
– Around 600 modules, 60 image formats

– Nearly a million lines of code

● Plus several DSTO staff
● Plus collaborators in UK, Canada, USA

An ADSS Module

● Aim is to have each module
– Self contained

– Self documenting

● We achieve this through:
– A module header which contains the

documentation (LaTeX format).

– And the interface specification
 (principally the parameters)

– The module body implements the algorithm.

● /*** COPYRIGHT
Copyright © Commonwealth of Australia 1993-
2010
***/

● /*** AUTHOR
Peter Perry, July 2010
***/

● /*** DOCUMENTATION
A module to detect bright pixels.

Bright pixels are detected by simple
thresholding....
***/

● /*** SPECIFICATION
(config (threshold ?real)
 (param threshold (type float) (init 2.0) store)
 (description “Threshold.”)
 (extended-description
 “This is the detection threshold.”))
(config (tile-size ?integer)
 (param tileSize (type int) (init 1000) store)
 (assert tileSize > 0)
 (description “Image processing tile size.”)
 (extended-description
 “The image will be processed in tiles of”
 “size $tileSize \times tileSize$.”))

(config default BASIC_CONFIGS)

● Specification section (cont):

(callback imagesReady)
(callback processTile)
(callback imagesDone)

(command default)

(global imageFrag (type fragment))

***/

● The actual code:

#include “adss-module.hpp”
#include “absolute-threshold.inc”

tcdl_status imagesDone(void)
{
 frag_free(&moduleData.imageFrag);
 return CDL_OK;
}

tcdl_status imagesReady(void)
{

 frag_init(&moduleData.imageFrag,
 moduleData.tileSize,
 moduleData.tileSize,
 DTYPE_FLOAT, false,
 DSCALE_LIN_AMPL);
 cdl_set_mode(CDL_MODE_REGION,
 NULL, NULL);
 cdl_set_geometry(moduleData.tileSize,
 moduleData.tileSize,
 0, 0, 1, 0, 0, 1, true);
 return CDL_OK;
}

tcdl_status processTile(tcdl_image *img,
 int x0, int y0, int w0, int h0, /* input region */
 int x1, int y1, int w1, int h1) /* output region */
{

 int x, y;
 float *p;

 frag_reshape(&moduleData.imageData,
 w0, h0);
 ail_read_fragment(IMAGE_HANDLE(img),
 &moduleData.imageData,
 NULL, x0, y0, w0, h0);
 assign_frag_data(FLOAT, p,
 moduleData.imageData);

 for (y = 0; y < w0; ++y)
 for (x = 0; x < h0; ++x) {
 if (*p >= moduleData.threshold) {
 cdl_generate_detection(x0 + x, y0 + y,
 “thresholded-value, *p);
 }
 ++p;
 }

 return CDL_OK;
}

Comments

● As you can see, there is not much code.
Nearly everything is done by the libraries

– Conversion from external image format.

– Loading image data into memory.

– Working out the next tile to process

– Generating the output (detection ..) message.

● I have made a few simplifications.
– But this would work as printed.

Application Areas

● Satellite and Wide Area Surveillance
– Detecting ships.

● Video Processing
– Detecting moving features.

– Identifying vehicles (ellipse detection).

● Hyperspectral Image Processing
– 128 spectral bands (cf 3 in a colour image)

● Image Fusion
– Merging data from 2 or 3 different sensors

Application Areas (cont)

● Image Registration
– Merging data from two or more surveys over

the same region.

● Face and Gait Recognition
– Identifying people in surveillance video.

● Warning of Abandoned Baggage

29Support (Segmentation)

30Prescreening

31Support (Clustering and Voting)

32Discrimination

33Support (Validation)

34

Geographic Data Fusion within ADSS

Red : Maritime Targets
Yellow : Terrestrial
 Targets

Image of the
Straight of
Gibraltar
Detections indicated
by red and yellow
boxes
Clicking on detections
brings up dialog boxes
 showing geo-
referencing data from
the World Vector
Shoreline Database
Can distinguish
between targets in
different territorial
waters
Terrestrial targets can
be processed
differently to maritime
targets

35

Super Resolution – SAR Spot Sequence

Can obtain enhanced
resolution of a target
from a temporal
sequence of images

Information from multiple
frames is used to build a
single still image

Can improve effective
resolution of a sensor

Super-resolved
Targets

36

Image Mosaic – MPEG Sequence

Image frame size

3000 Frame Sequence
Early result not using KLV metadata

37

Courtesy P. Torr’s Structure and Motion Toolkit in Matlab

Example fly over of Parafield airfield control tower

38

39

40

41

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Geographic Data Fusion within ADSS
	Super Resolution – SAR Spot Sequence
	Slide 36
	Example fly over of Parafield airfield control tower
	Slide 38
	Slide 39
	Slide 40
	Slide 41

